11 research outputs found

    >

    No full text

    First accuracy projection for the high C-field Cs beam frequency standard

    No full text
    The high C-field Cs beam frequency standard is presently a working machine which is undergoing first accuracy evaluations. The projected accuracy goal is as yet unattained mainly because of inadequate C-field uniformity and stability. An analysis of the projected possible C-field improvements and the consequent uncertainty is here reported

    >

    No full text

    Cs cell atomic clock optically pumped by a diode laser

    No full text
    In the number of the atomic frequency standards, or atomic clocks, the devices working by optical pumping of alkali vapor in cell (usually known as Rubidium frequency standard, because the rubidium atom is traditionally used) are by far the most common. They are used as a reference for a quartz oscillator in the applications where its long-term stability is no more adequate. The best commercial device presents a short-term stability only slightly better than 10(-11) at 1 s, which is, however, almost three order of magnitude larger than the theoretical limit, when a spectrally narrowed laser diode is used as pumping source. An accurate analysis of the pumping process and a carefully project of the pumping laser system and of the microwave interrogation circuits may closer approach the theoretical limit. In this paper we present an analysis of the interrogation process and the development of a new device, based on Cs transition at 9192.631 MHz. In this apparatus we control carefully both the spectral purity of the pumping diode laser, and of the microwave interrogation chain, which are the principal source of losses for the clock stability. For this purpose, we tested new schemes for locking the diode laser radiation on the resonance Cs line, new scheme for microwave locking circuit, and a new microwave resonance cell, where the Cs is directly filled in the metallic cavity for a more direct control of the cavity mode

    The current stage of development of the receiving complex of the millimetron space observatory

    No full text
    We present an overview of the state of the onboard receiving complex of the Millimetron space observatory in the development phase of its preliminary design. The basic parameters of the onboard equipment planned to create and required for astrophysical observations are considered. A review of coherent and incoherent detectors, which are central to each receiver of the observatory, is given. Their characteristics and limiting parameters feasible at the present level of technology are reported
    corecore